Session
Pre-Conference Workshop Session 2: Next on the Pad - Research & Academia
Location
Utah State University, Logan, UT
Abstract
The CubeSat Astronomy NASA and Yonsei using Virtual telescope ALignment for Coronagraph (CANYVAL-C) is a technology demonstration mission that shows the concept of a virtual space telescope using two CubeSats in formation flying. The final goal of the mission is to obtain several images of the solar corona during an artificial solar eclipse created by the two CubeSats, Timon (1U CubeSat) and Pumbaa (2U CubeSat). To implement this mission, two CubeSats in formation flying and a ground segment have been developed. The CubeSats were constructed mainly with commercial off the shelf components, sharing the bus architecture. The payload of each CubeSat is a visible camera and an occulter to block the light from the photosphere of the Sun. The occulter is composed of tape measures and a black-colored polyimide film; the system size is smaller than 0.5U (10 × 10 × 5 cm3) while it stowed and enlarged to 0.75 × 0.75 m2 after spreading the film. The 3D-printed propulsion system is smaller than 0.5U and facilitates accurate positioning maneuvers of Pumbaa. The on-board computer has multi-task processing capabilities and a space-saving configuration which is integrated with the GNSS receiver and the UHF transceiver. The core technology for the mission implementation is the precise formation flying guidance, navigation, and control system with a cold-gas propulsion system and an inter-satellite link system. The specification of each CubeSat system was evaluated using numerical simulations and ground testing. To operate CubeSats, the ground segment was constructed with some components, including the UHF ground station (UGS), flight dynamics system (FDS), mission analysis and planning system (MAPS), and spacecraft operation system (SOS). Each component works under the environment of an integrated graphic user interface. In particular, the UGS handles the RF communication, data storage, and instrument control for tracking CubeSats. The FDS processes the navigation data to precisely estimate absolute position and velocity. Then, the MAPS determines the allowable mission schedule and parameter set for implementing maneuvers of each CubeSat. Using the MAPS, feasibility of the mission operation canbe ensured through numerical simulations based on the solutions from the FDS. Finally, the SOS is the interface system between each component, processing telemetry and generating telecommand. The CubeSats were launched on March 22, 2021, by Soyuz-2.1a with a Fregat stage.
Development of Formation Flying CubeSats and Operation Systems for the CANYVAL-C Mission: Launch and Lessons Learned
Utah State University, Logan, UT
The CubeSat Astronomy NASA and Yonsei using Virtual telescope ALignment for Coronagraph (CANYVAL-C) is a technology demonstration mission that shows the concept of a virtual space telescope using two CubeSats in formation flying. The final goal of the mission is to obtain several images of the solar corona during an artificial solar eclipse created by the two CubeSats, Timon (1U CubeSat) and Pumbaa (2U CubeSat). To implement this mission, two CubeSats in formation flying and a ground segment have been developed. The CubeSats were constructed mainly with commercial off the shelf components, sharing the bus architecture. The payload of each CubeSat is a visible camera and an occulter to block the light from the photosphere of the Sun. The occulter is composed of tape measures and a black-colored polyimide film; the system size is smaller than 0.5U (10 × 10 × 5 cm3) while it stowed and enlarged to 0.75 × 0.75 m2 after spreading the film. The 3D-printed propulsion system is smaller than 0.5U and facilitates accurate positioning maneuvers of Pumbaa. The on-board computer has multi-task processing capabilities and a space-saving configuration which is integrated with the GNSS receiver and the UHF transceiver. The core technology for the mission implementation is the precise formation flying guidance, navigation, and control system with a cold-gas propulsion system and an inter-satellite link system. The specification of each CubeSat system was evaluated using numerical simulations and ground testing. To operate CubeSats, the ground segment was constructed with some components, including the UHF ground station (UGS), flight dynamics system (FDS), mission analysis and planning system (MAPS), and spacecraft operation system (SOS). Each component works under the environment of an integrated graphic user interface. In particular, the UGS handles the RF communication, data storage, and instrument control for tracking CubeSats. The FDS processes the navigation data to precisely estimate absolute position and velocity. Then, the MAPS determines the allowable mission schedule and parameter set for implementing maneuvers of each CubeSat. Using the MAPS, feasibility of the mission operation canbe ensured through numerical simulations based on the solutions from the FDS. Finally, the SOS is the interface system between each component, processing telemetry and generating telecommand. The CubeSats were launched on March 22, 2021, by Soyuz-2.1a with a Fregat stage.