Session

Technical Poster Session 7: Ground Systems & Operations

Location

Utah State University, Logan, UT

Abstract

The Virtual Telescope for X-Ray Observations (VTXO) is part of a new generation of distributed component, long focal length telescopes which promise to provide orders of magnitude improvement in angular resolution in the X-ray band over the current state of the art. VTXO will include Phased Fresnel Lenses (PFL), which provide nearly diffraction-limited imaging, with around a 1 km focal length carried by the Optics Spacecraft (OSC), which will fly in a precision formation with the Detector Spacecraft (DSC) approximating a rigid telescope body, with the telescope achieving nearly 50 milli-arcsecond angular resolution in the 4.5 – 6.7 keV X-ray band [1]. In order to maintain the precise formation requirements, while pointing the telescope axis at the desired astronomical targets, one or both spacecraft will inherently be traveling on a non-natural orbit trajectory. These families of trajectories require one or both vehicles to maneuver regularly to maintain the desired path.

Share

COinS
 
Aug 7th, 12:00 AM

Navigation and Control Performance Utilizing Precision Formation Flying Along a Propellent Optimized Trajectory for the VTXO Mission

Utah State University, Logan, UT

The Virtual Telescope for X-Ray Observations (VTXO) is part of a new generation of distributed component, long focal length telescopes which promise to provide orders of magnitude improvement in angular resolution in the X-ray band over the current state of the art. VTXO will include Phased Fresnel Lenses (PFL), which provide nearly diffraction-limited imaging, with around a 1 km focal length carried by the Optics Spacecraft (OSC), which will fly in a precision formation with the Detector Spacecraft (DSC) approximating a rigid telescope body, with the telescope achieving nearly 50 milli-arcsecond angular resolution in the 4.5 – 6.7 keV X-ray band [1]. In order to maintain the precise formation requirements, while pointing the telescope axis at the desired astronomical targets, one or both spacecraft will inherently be traveling on a non-natural orbit trajectory. These families of trajectories require one or both vehicles to maneuver regularly to maintain the desired path.