Session
Weekday Session 9: Propulsion
Location
Utah State University, Logan, UT
Abstract
After a fifty year absence, NASA’s return to the lunar surface under the Artemis Program – for long term human exploration and utilization – is driving commercial and academic opportunities for small satellite and small lander platforms (e.g., Commercial Lunar Payload Services program – CLPS). Bipropellant thrusters are a reliable, low risk, and flight proven method for the propulsion and attitude control that is required for complex maneuvers such entry, descent, and landing (EDL) or in-space proximity operations. However, due to the increasingly competitive commercial spaceflight market in the last decade, satellite subsystems must also be affordable to buy their way into the final mission design and engineering solution. Therefore starting in 2019, and based off prior satellite integration work, Aerojet Rocketdyne (AR) undertook an advanced propulsion development effort to combine modern metal additive manufacturing (AM) techniques with thrust scalable hypergolic MON-25 propulsion technology to create a high performance and fully integrated (i.e., multiple thrusters integrated into a single package) reaction control system (RCS) at a fraction of the production cost when compared to the heritage designs that are assembled from individual thrusters. The point-of-departure for the RCS design comes from a new line of additively manufactured thrusters that stably burn volatile MON-25 oxidizer with monomethylhydrazine (MMH) fuel at thrust levels of 5 lbf and 100 lbf. Cost at the subsystem level is lowered by the AM integration of parts and functions which reduces the build of materials, touch labor, and assembly time. In addition, AM allows the design to be adaptable to changing requirements such as the number of thrusters, orientation, and thrust level. Cost at the satellite level is reduced by leveraging MON-25’s lower freezing point of -55 °C (compared to traditional dinitrogen tetroxide oxidizer) to minimize mass, thermal, and power requirements while operating in deep-space environments. In addition, thruster operation at the equal volume mixture ratio for MMH/MON-25 allows for a modular approach to tank design and a predictable center of gravity during maneuvering. This paper provides an overview of the ISE-5 and the ISE-100 MON-25 thruster technology that powers the integrated designs as well as the development progress of the AM RCS concept itself. This includes reduction to practice activities such as proof-of-concept AM material test demonstrators and water flow test units.
Additively Manufactured RCS for Small Satellites and Landers
Utah State University, Logan, UT
After a fifty year absence, NASA’s return to the lunar surface under the Artemis Program – for long term human exploration and utilization – is driving commercial and academic opportunities for small satellite and small lander platforms (e.g., Commercial Lunar Payload Services program – CLPS). Bipropellant thrusters are a reliable, low risk, and flight proven method for the propulsion and attitude control that is required for complex maneuvers such entry, descent, and landing (EDL) or in-space proximity operations. However, due to the increasingly competitive commercial spaceflight market in the last decade, satellite subsystems must also be affordable to buy their way into the final mission design and engineering solution. Therefore starting in 2019, and based off prior satellite integration work, Aerojet Rocketdyne (AR) undertook an advanced propulsion development effort to combine modern metal additive manufacturing (AM) techniques with thrust scalable hypergolic MON-25 propulsion technology to create a high performance and fully integrated (i.e., multiple thrusters integrated into a single package) reaction control system (RCS) at a fraction of the production cost when compared to the heritage designs that are assembled from individual thrusters. The point-of-departure for the RCS design comes from a new line of additively manufactured thrusters that stably burn volatile MON-25 oxidizer with monomethylhydrazine (MMH) fuel at thrust levels of 5 lbf and 100 lbf. Cost at the subsystem level is lowered by the AM integration of parts and functions which reduces the build of materials, touch labor, and assembly time. In addition, AM allows the design to be adaptable to changing requirements such as the number of thrusters, orientation, and thrust level. Cost at the satellite level is reduced by leveraging MON-25’s lower freezing point of -55 °C (compared to traditional dinitrogen tetroxide oxidizer) to minimize mass, thermal, and power requirements while operating in deep-space environments. In addition, thruster operation at the equal volume mixture ratio for MMH/MON-25 allows for a modular approach to tank design and a predictable center of gravity during maneuvering. This paper provides an overview of the ISE-5 and the ISE-100 MON-25 thruster technology that powers the integrated designs as well as the development progress of the AM RCS concept itself. This includes reduction to practice activities such as proof-of-concept AM material test demonstrators and water flow test units.