Session
Weekday Session 3: Science/Mission Payloads
Location
Utah State University, Logan, UT
Abstract
The SMOS and SMAP radiometers have demonstrated the ability to monitor soil moisture and sea surface salinity. It is important to maintain data continuity for these science measurements. The proposed instrument concept (Global L-band active/passive Observatory for Water cycle Studies - GLOWS) will enable low-cost L-band data continuity (that includes both L-band radar and radiometer measurements). The objective of this project is to develop key instrument technology to enable L-band observations using an Earth Venture class satellite. Specifically, a new deployable meta-lens antenna is being developed that will enable a smaller EELV Secondary Payload Adapter (ESPA) Grande-class satellite mission to continue the L-band observations at SMAP and SMOS resolution and accuracy at substantially lower cost, size, and weight. The key to maintaining the scientific value of the observations is the retention of the full 6-meter antenna aperture, while packaging that aperture on a small ESPA Grande satellite platform. The meta-lens antenna is lightweight, has a simplified flat deployed surface geometry, and stows in a compact form factor. This dramatic aperture packaging reduction enables the GLOWS sensor to fit on an Earth Venture class satellite.
Enabling Big Science in a Small Satellite - The Global L-band Observatory for Water Cycle Studies (GLOWS) Mission
Utah State University, Logan, UT
The SMOS and SMAP radiometers have demonstrated the ability to monitor soil moisture and sea surface salinity. It is important to maintain data continuity for these science measurements. The proposed instrument concept (Global L-band active/passive Observatory for Water cycle Studies - GLOWS) will enable low-cost L-band data continuity (that includes both L-band radar and radiometer measurements). The objective of this project is to develop key instrument technology to enable L-band observations using an Earth Venture class satellite. Specifically, a new deployable meta-lens antenna is being developed that will enable a smaller EELV Secondary Payload Adapter (ESPA) Grande-class satellite mission to continue the L-band observations at SMAP and SMOS resolution and accuracy at substantially lower cost, size, and weight. The key to maintaining the scientific value of the observations is the retention of the full 6-meter antenna aperture, while packaging that aperture on a small ESPA Grande satellite platform. The meta-lens antenna is lightweight, has a simplified flat deployed surface geometry, and stows in a compact form factor. This dramatic aperture packaging reduction enables the GLOWS sensor to fit on an Earth Venture class satellite.