Session

Weekday Session 5: Next on the Pad

Location

Utah State University, Logan, UT

Abstract

The Nano-satellite Atmospheric Chemistry Hyperspectral Observation System (NACHOS) is a high-throughput (f/2.9), high spectral resolution (1.3 nm optical, 0.57 nm sampling) hyperspectral imager covering the 300-500 nm spectral region with 350 spectral bands. The combined 1.5U instrument payload and 1.5U spacecraft bus comprise a 3U CubeSat. Spectroscopically similar to NASA’s Ozone Monitoring Instrument (OMI), which provides wide-field coverage at ~20 km spatial resolution, NACHOS offers complementary targeted measurements at far higher spatial resolution of ~0.4 km/pixel from 500 km altitude over its 15 ̊ across-track field of view. NACHOS incorporates highly streamlined onboard gas-retrieval algorithms, alleviating the need to routinely downlink massive hyperspectral data cubes. This paper discusses the instrument design, requirements leading to it, preliminary results, and science goals, including monitoring NO2 as a proxy for anthropogenic greenhouse gases, low-level degassing of SO2 and halogen oxides at pre-eruptive volcanoes, and formaldehyde from wildfires. Aiming for an eventual many-satellite constellation providing both high spatial resolution and frequent target revisits, the current NACHOS project is launching two CubeSats, the first already launched to the International Space Station aboard the NG-17 Cygnus vehicle on February 19, 2022 and awaiting deployment to its final orbit in June, and the second launching June 29, 2022.

Share

COinS
 
Aug 9th, 3:00 PM

NACHOS, a CubeSat-Based High-Resolution UV-Visible Hyperspectral Imager for Remote Sensing of Trace Gases: System Overview, Science Objectives, and Preliminary Results

Utah State University, Logan, UT

The Nano-satellite Atmospheric Chemistry Hyperspectral Observation System (NACHOS) is a high-throughput (f/2.9), high spectral resolution (1.3 nm optical, 0.57 nm sampling) hyperspectral imager covering the 300-500 nm spectral region with 350 spectral bands. The combined 1.5U instrument payload and 1.5U spacecraft bus comprise a 3U CubeSat. Spectroscopically similar to NASA’s Ozone Monitoring Instrument (OMI), which provides wide-field coverage at ~20 km spatial resolution, NACHOS offers complementary targeted measurements at far higher spatial resolution of ~0.4 km/pixel from 500 km altitude over its 15 ̊ across-track field of view. NACHOS incorporates highly streamlined onboard gas-retrieval algorithms, alleviating the need to routinely downlink massive hyperspectral data cubes. This paper discusses the instrument design, requirements leading to it, preliminary results, and science goals, including monitoring NO2 as a proxy for anthropogenic greenhouse gases, low-level degassing of SO2 and halogen oxides at pre-eruptive volcanoes, and formaldehyde from wildfires. Aiming for an eventual many-satellite constellation providing both high spatial resolution and frequent target revisits, the current NACHOS project is launching two CubeSats, the first already launched to the International Space Station aboard the NG-17 Cygnus vehicle on February 19, 2022 and awaiting deployment to its final orbit in June, and the second launching June 29, 2022.