Session

Technical Poster Session 4

Location

Utah State University, Logan, UT

Abstract

The CubeSat platform is finding increasing use in space science applications due to its low cost and comparative ease of launch. It is becoming a key scientific discovery tool in low Earth orbit (LEO) and beyond, including geosynchronous equatorial orbit (GEO), the Lagrange Points, Lunar missions, and more. The increasing complexity of these missions and their scientific goals must be supported by equal advancements in communications technology. Higher data rates and greater reliability are required every year. However, the reduced Size, Weight, and Power (SWaP) constraints of CubeSat platforms introduce unique challenges in the area of satellite communications. There is currently a lack of communication equipment tailored specifically to the CubeSat platform. This lack of standardized, tested equipment extends development time and reduces mission confidence. Furthermore, missions utilizing the CubeSat platform are often subject to more difficult design constraints. Antenna placement, size, and pointing are often subordinate to the requirements of the payload instruments and mission goals. Traditional link margin estimation techniques are insufficient in these cases, as they emphasize worst case scenarios. In reality the actual link parameters may vary widely even during a single pass. This presents new challenges in predicting communications performance and scheduling ground station contacts, but also new opportunities for improving efficiency. This paper presents the integration, testing, and validation process for a new software defined radio (SDR) designed for the CubeSat platform in conjunction with Vulcan Wireless, Inc. The SDR is planned for use on 5 upcoming CubeSat missions at NASAs Goddard Space Flight Center (GSFC) including a Geosynchronous Transfer Orbit (GTO) mission and it may also serve as a standard and well-tested option for future missions by enabling a standardized, rapid and low cost CubeSat communication system network integration process. Detailed simulations have been developed to estimate the communication performance of these missions, taking the unique antenna placements and attitude behavior of each satellite into account. These simulations allow a much more accurate analysis of the expected link margin, which varies considerably during each pass for the NASA Space Relay (SR) and Direct to Earth (DTE) network. The modelling procedures are outlined, and the results are used to predict communications performance of the missions.

Share

COinS
 
Aug 10th, 3:30 PM

Flight and Direct to Earth/Space Relay Communication System Architecture for GSFC CubeSat Missions

Utah State University, Logan, UT

The CubeSat platform is finding increasing use in space science applications due to its low cost and comparative ease of launch. It is becoming a key scientific discovery tool in low Earth orbit (LEO) and beyond, including geosynchronous equatorial orbit (GEO), the Lagrange Points, Lunar missions, and more. The increasing complexity of these missions and their scientific goals must be supported by equal advancements in communications technology. Higher data rates and greater reliability are required every year. However, the reduced Size, Weight, and Power (SWaP) constraints of CubeSat platforms introduce unique challenges in the area of satellite communications. There is currently a lack of communication equipment tailored specifically to the CubeSat platform. This lack of standardized, tested equipment extends development time and reduces mission confidence. Furthermore, missions utilizing the CubeSat platform are often subject to more difficult design constraints. Antenna placement, size, and pointing are often subordinate to the requirements of the payload instruments and mission goals. Traditional link margin estimation techniques are insufficient in these cases, as they emphasize worst case scenarios. In reality the actual link parameters may vary widely even during a single pass. This presents new challenges in predicting communications performance and scheduling ground station contacts, but also new opportunities for improving efficiency. This paper presents the integration, testing, and validation process for a new software defined radio (SDR) designed for the CubeSat platform in conjunction with Vulcan Wireless, Inc. The SDR is planned for use on 5 upcoming CubeSat missions at NASAs Goddard Space Flight Center (GSFC) including a Geosynchronous Transfer Orbit (GTO) mission and it may also serve as a standard and well-tested option for future missions by enabling a standardized, rapid and low cost CubeSat communication system network integration process. Detailed simulations have been developed to estimate the communication performance of these missions, taking the unique antenna placements and attitude behavior of each satellite into account. These simulations allow a much more accurate analysis of the expected link margin, which varies considerably during each pass for the NASA Space Relay (SR) and Direct to Earth (DTE) network. The modelling procedures are outlined, and the results are used to predict communications performance of the missions.