Session

Technical Poster Session 3

Location

Utah State University, Logan, UT

Abstract

New cutting-edge imaging sensors can now reduce instrument size and mass, leading to mission cost savings, and bring sub-50cm imaging capability into the realm of small satellites. Whilst aperture is essential to achieving resolution, half-pixel shifted sensor architectures decouple achievable Ground Sampling Distance (GSD) from the native ground projected pixel. This facilitates the deployment of Very High Resolution (VHR) small satellite constellations featuring improved Signal-to-Noise performance and increased area collection rates compared to push-frame systems.

A fundamental limitation to the theoretical performance of an optical system is imposed by its aperture diameter; hence, for a given aperture, the aim is to maximize the information content resolved up to this limit. This is achieved by minimizing losses caused by aberrations in the optical system and enhancing platform stability on-orbit. Further information is lost due to aliasing at higher spatial frequencies; however, the recovery of such information is unlocked through the novel sensor technology and processing techniques proposed.

Funded under the European Space Agency (ESA) “Investing in Industrial Innovation” (InCubed) program, this paper reports on the build and verification campaign of a sub-50cm capable instrument Proto-Flight Model (PFM), the beneficial properties of half-pixel offset sensors, and the platform supporting such a payload.

SSC23-P3-21.pdf (2073 kB)
SSC23-P3-21 Poster

Share

COinS
 
Aug 9th, 9:45 AM

Breaking the Smallsat Barriers to Sub-50cm Imaging

Utah State University, Logan, UT

New cutting-edge imaging sensors can now reduce instrument size and mass, leading to mission cost savings, and bring sub-50cm imaging capability into the realm of small satellites. Whilst aperture is essential to achieving resolution, half-pixel shifted sensor architectures decouple achievable Ground Sampling Distance (GSD) from the native ground projected pixel. This facilitates the deployment of Very High Resolution (VHR) small satellite constellations featuring improved Signal-to-Noise performance and increased area collection rates compared to push-frame systems.

A fundamental limitation to the theoretical performance of an optical system is imposed by its aperture diameter; hence, for a given aperture, the aim is to maximize the information content resolved up to this limit. This is achieved by minimizing losses caused by aberrations in the optical system and enhancing platform stability on-orbit. Further information is lost due to aliasing at higher spatial frequencies; however, the recovery of such information is unlocked through the novel sensor technology and processing techniques proposed.

Funded under the European Space Agency (ESA) “Investing in Industrial Innovation” (InCubed) program, this paper reports on the build and verification campaign of a sub-50cm capable instrument Proto-Flight Model (PFM), the beneficial properties of half-pixel offset sensors, and the platform supporting such a payload.