Session

Weekday Session 1: Year in Review

Location

Utah State University, Logan, UT

Abstract

Since launch in May 2022, the TeraByte Infrared Delivery (TBIRD) mission has successfully demonstrated 200 Gbps laser communications from a 6U CubeSat and has transferred up to 4.8 terabytes (TB) in a pass from low Earth orbit to ground. To our knowledge, this is the fastest downlink ever achieved from space. To support the narrow downlink beam required for high rate communications, the payload provides pointing feedback to the host spacecraft to precisely track the ground station throughout the 5-minute pass. The space and ground terminals utilize fiber-coupled coherent transceivers in conjunction with an automatic repeat request (ARQ) system to guarantee error-free communication through an atmospheric fading channel. This paper presents an overview of the link operations and mission results to date, as well as implications for future missions with high rate lasercom.

Share

COinS
 
Aug 7th, 2:45 PM

Operations and Results from the 200 Gbps TBIRD Laser Communication Mission

Utah State University, Logan, UT

Since launch in May 2022, the TeraByte Infrared Delivery (TBIRD) mission has successfully demonstrated 200 Gbps laser communications from a 6U CubeSat and has transferred up to 4.8 terabytes (TB) in a pass from low Earth orbit to ground. To our knowledge, this is the fastest downlink ever achieved from space. To support the narrow downlink beam required for high rate communications, the payload provides pointing feedback to the host spacecraft to precisely track the ground station throughout the 5-minute pass. The space and ground terminals utilize fiber-coupled coherent transceivers in conjunction with an automatic repeat request (ARQ) system to guarantee error-free communication through an atmospheric fading channel. This paper presents an overview of the link operations and mission results to date, as well as implications for future missions with high rate lasercom.