Session

Weekend Session VI: Communications – Research & Academia

Location

Utah State University, Logan, UT

Abstract

The paper introduces a power supply and Radio Frequency (RF) signal routing architecture design for a foldable phased array transceiver intended for next-generation space communication systems. The transceiver is built using four 6-layer rigid-flexible substrates, enabling a high layer count and complex electrical routing. Using a DC-DC converter and changing the voltage from 5.5V to 1.2V reduces power loss by 43%. Three types of transmission lines are used to enable folding. These lines allow for complex, low-loss RF distribution. A prototype rigid flexible board was fabricated for evaluation, and power supply and RF were evaluated.

Available for download on Friday, August 02, 2024

Share

COinS
 
Aug 4th, 11:45 AM

Power Supply and RF Signal Routing Architecture Design for Ultralight Deployable Ka-Band Active Phased-Array Transceivers

Utah State University, Logan, UT

The paper introduces a power supply and Radio Frequency (RF) signal routing architecture design for a foldable phased array transceiver intended for next-generation space communication systems. The transceiver is built using four 6-layer rigid-flexible substrates, enabling a high layer count and complex electrical routing. Using a DC-DC converter and changing the voltage from 5.5V to 1.2V reduces power loss by 43%. Three types of transmission lines are used to enable folding. These lines allow for complex, low-loss RF distribution. A prototype rigid flexible board was fabricated for evaluation, and power supply and RF were evaluated.