Location
Salt Lake Community College
Start Date
5-5-2008 9:45 AM
Description
To understand and model the energetics of the Sun-Earth connection, measurements of specific atmospheric molecules are beneficial. Our objective is to formulate an algorithm to derive temporally varying atmospheric water vapor concentrations as a function of altitude, latitude, and longitude from solar irradiance absorption measurements. The Visidyne SAM instrument is used to study the size distribution of cloud particles. By introducing a spectrometer to the SAM instrument, column water vapor values are produced as an additional data product. A new model algorithm was developed and tested against existing algorithms. Through a least-squares analysis, the new algorithm showed an improvement of a factor of up to 23 over the industry standard. A test was also conducted to ascertain which water absorption bandpass produces the least error. Through these tests an improved model algorithm has been produced.
Algorithm Development for Column Water Vapor Retrieval Using the SAM Sensor
Salt Lake Community College
To understand and model the energetics of the Sun-Earth connection, measurements of specific atmospheric molecules are beneficial. Our objective is to formulate an algorithm to derive temporally varying atmospheric water vapor concentrations as a function of altitude, latitude, and longitude from solar irradiance absorption measurements. The Visidyne SAM instrument is used to study the size distribution of cloud particles. By introducing a spectrometer to the SAM instrument, column water vapor values are produced as an additional data product. A new model algorithm was developed and tested against existing algorithms. Through a least-squares analysis, the new algorithm showed an improvement of a factor of up to 23 over the industry standard. A test was also conducted to ascertain which water absorption bandpass produces the least error. Through these tests an improved model algorithm has been produced.