Start Date

5-2020 12:00 AM

Description

As NASA turns to additive manufacturing processes, there is a need to ensure that the parts they produce are reliable. This is especially true when creating parts in space, where resources are limited and failure could result in catastrophe. Active thermography has shown potential as a non-destructive quality assurance technique for additive manufacturing processes. Heat transfer models used in active thermography techniques require accurate material property measurements in order to extract useful information about the system, including defect location. The spectral absorption coefficient, which determines the depth at which radiative power is absorbed into a surface, is a material property necessary for performing active thermography on AM polymers. This paper presents measurements of spectral absorption coefficients of polymers commonly used in additive manufacturing. Spectral absorption coefficients for fully dense PLA, ABS, and Nylon 12 samples are reported. Future work is needed to measure the spectral absorption coefficients of different materials and colored filaments commonly used in additive manufacturing.

Comments

Due to COVID-19, the Symposium was not able to be held this year. However, papers and posters were still submitted.

Included in

Engineering Commons

Share

COinS
 
May 1st, 12:00 AM

Spectral Absorption Coefficient of Additive Manufacturing Polymers

As NASA turns to additive manufacturing processes, there is a need to ensure that the parts they produce are reliable. This is especially true when creating parts in space, where resources are limited and failure could result in catastrophe. Active thermography has shown potential as a non-destructive quality assurance technique for additive manufacturing processes. Heat transfer models used in active thermography techniques require accurate material property measurements in order to extract useful information about the system, including defect location. The spectral absorption coefficient, which determines the depth at which radiative power is absorbed into a surface, is a material property necessary for performing active thermography on AM polymers. This paper presents measurements of spectral absorption coefficients of polymers commonly used in additive manufacturing. Spectral absorption coefficients for fully dense PLA, ABS, and Nylon 12 samples are reported. Future work is needed to measure the spectral absorption coefficients of different materials and colored filaments commonly used in additive manufacturing.