Location
Virtual
Start Date
5-10-2021 10:50 AM
End Date
5-10-2021 10:55 AM
Description
The goal of this study is to determine the minimum spatial sampling resolution required to accurately detect microscopic targets within a sample using Raman spectroscopy. The resolution depends on the light scattering properties of the material. We use Monte Carlo simulations to study how measurement geometry and optical properties of a sample affect the Raman signal detected from an embedded target. We confirm these results using polystyrene beads embedded in artificial tissue phantoms.
Included in
Simulated and Phantom Detection of Microscopic Targets by Raman Spectroscopy
Virtual
The goal of this study is to determine the minimum spatial sampling resolution required to accurately detect microscopic targets within a sample using Raman spectroscopy. The resolution depends on the light scattering properties of the material. We use Monte Carlo simulations to study how measurement geometry and optical properties of a sample affect the Raman signal detected from an embedded target. We confirm these results using polystyrene beads embedded in artificial tissue phantoms.