Relationships Between Soil Nitrogen Dynamics and Natural 15N Abundance in Plant Foliage from Great Smoky Mountains National Park

Document Type

Article

Journal/Book Title/Conference

Canadian Journal of Forest Research

Volume

24

Issue

8

Publisher

National Research Council Canada

Publication Date

1994

Keywords

site nitrogen dynamics, natural 15N abundance, plant foliage, Great Smoky Mountains National Park

First Page

1636

Last Page

1645

Abstract

We tested the hypothesis that naturally occurring nitrogen (N) isotope ratios in foliage (from plants that do not symbiotically fix atmospheric N2) are an indicator of soil N dynamics in forests. Replicate plots were established at eight locations ranging in elevation from 615 to 1670 m in Great Smoky Mountains National Park in eastern Tennessee, U.S.A. The locations selected ranged from N-poor (low-elevation) to N-rich (high-elevation) forest stands. Soils were sampled in June 1992; plants, forest floors, and upper mineral soils were sampled in August 1992. Net N mineralization and net nitrification potentials for surface mineral soils and organic matter layers at each site were determined by aerobic laboratory incubations. Soils and organic layers from high-elevation sites had greater net N mineralization and nitrification potentials than soils from low-elevation sites. There were significant (P ≤ 0.05) differences between study sites in soil 15N abundance. Therefore, we examined correlations between measures of soil N availability and both mean foliar δ15N values and mean enrichment factors (εp−s = δ15Nleaf − δ15Nsoil). In evergreens, maples, and ferns, mean foliar δ15N values and mean enrichment factors were positively correlated with net N mineralization and net nitrification potentials in soil. The observed relationships between natural 15N abundance in plant leaves and soil N availability were explained by a simple model of soil N dynamics. The model predicts how the isotopic composition of plant N is affected by the following factors: (i) varying uptake of soil NH4-N and NO3-N, (ii) the isotopic composition of different soil N pools, and (iii) relative rates of soil N transformations.

Comments

Originally published by the National Research Council - Canada. Abstract available through remote link. Subscription required to access article fulltext.

Share

COinS