Land Use and the Structure of Western USA Stream Invertebrate Assemblages: O/E and Ecological Traits

Document Type

Article

Journal/Book Title/Conference

Journal of the North American Benthological Society

Volume

27

Publication Date

1-1-2008

Keywords

WSA, NAWQA, streams, rivers, biological assessment, indicators, predictive models, O/E, functional traits, tolerance values

First Page

986

Last Page

999

Abstract

Inferences drawn from regional bioassessments could be strengthened by integrating data from different monitoring programs. We combined data from the US Geological Survey National Water-Quality Assessment (NAWQA) program and the US Environmental Protection Agency Wadeable Streams Assessment (WSA) to expand the scope of an existing River InVertebrate Prediction and Classification System (RIVPACS)–type predictive model and to assess the biological condition of streams across the western US in a variety of landuse classes. We used model-derived estimates of taxon-specific probabilities of capture and observed taxon occurrences to identify taxa that were absent from sites where they were predicted to occur (decreasers) and taxa that were present at sites where they were not predicted to occur (increasers). Integration of 87 NAWQA reference sites increased the scope of the existing WSA predictive model to include larger streams and later season sampling. Biological condition at 336 NAWQA test sites was significantly (p < 0.001) associated with basin land use and tended to be lower in basins with intensive landuse modification (e.g., mixed, urban, and agricultural basins) than in basins with relatively undisturbed land use (e.g., forested basins). Of the 437 taxa observed among reference and test sites, 180 (41%) were increasers or decreasers. In general, decreasers had a different set of ecological traits (functional traits or tolerance values) than did increasers. We could predict whether a taxon was a decreaser or an increaser based on just a few traits, e.g., desiccation resistance, timing of larval development, habit, and thermal preference, but we were unable to predict the type of basin land use from trait states present in invertebrate assemblages. Refined characterization of traits might be required before bioassessment data can be used routinely to aid in the diagnoses of the causes of biological impairment.

Share

COinS