Four centuries of reconstructed hydroclimatic variability for Northwestern Chihuahua, Mexico, based on tree rings

Document Type

Article

Journal/Book Title/Conference

DOAJ

Volume

87

Publisher

Universidad Nacional Autónoma de México

Publication Date

1-1-2015

First Page

141

Last Page

153

Abstract

A Douglas-fir chronology with a length of 409 years (1600-2008) was developed for northwestern Chihuahua in Mesa de las Guacamayas, a “Natural Protected Area” known as an important nesting habitat for the thickbilled parrot (Rhynchopsitta pachyrhyncha) an endangered neotropical bird. Increment cores and cross-sections from selected Douglas-fir trees (Pseudotsuga menziesii) in a mixed conifer forest were obtained with an increment borer and a chain-saw. Standard dendrochronological techniques were used to process and date each one of the rings to their exact year of formation. The quality of dating of the measured series was analyzed with the COFECHA program, while biological trends not related to climate (age differences, stem-size increases, and disturbances) were removed by standardization procedures in the ARSTAN program. Tree ring series of earlywood, latewood and total ring width were developed for the last four centuries. The total ring-width chronology was significantly associated (r>0.40, p=0.000) with nearby chronologies, particularly those located <200 km apart along the western slopes of the Sierra Madre Occidental>(SMO) observing correlations as high as 0.69 (p<0.001). Association between chronologies decreased for those sites in the state of Durango along the SMO but separated more than 200 km in straight line and also for sites in nearby borderline in the USA side. The similar climatic response among distant chronologies implies the influence of common atmospheric circulatory patterns affecting a large portion of land simultaneously. ENSO is one of the most important factors in determining inter-annual and multiannual hydroclimatic variability in northern Mexico, increasing winter-spring precipitation in its warm phase and causing extreme droughts in its cold phase.

Share

COinS