Rotifer Population Spread in Relation to Food, Densityand Predation Risk in an Experimental System
Document Type
Article
Journal/Book Title/Conference
Journal of Animal Ecology
Volume
81
Issue
2
Publisher
Wiley
Publication Date
10-17-2011
First Page
323
Last Page
329
Abstract
Despite the popular use of diffusion models to predict the spatial spread of populations over time, we currently know little about how diffusion rates change with the state of the environment or the internal condition of individuals. To address this gap in our understanding, we measured rates of spread for many populations of the rotifer Brachionus calyciflorus in a suite of well‐replicated experiments. 2. In one set of experiments, we manipulated food availability and population density along a continuous range of densities. In a second set, we manipulated the internal state of entire populations via food deprivation and exposure to predator kairomones. 3. Across replicate populations, diffusion rates were positively correlated with conspecific density. Diffusion rates were negatively correlated with food availability, especially when conspecific density was high. Diffusion rates of food‐deprived populations or those exposed to predation risk were lower than controls. 4. Our results provide direct experimental evidence that rates of population spread are conditional on population density, food availability, body condition and predation risk.
Recommended Citation
Kuefler, D., T. Avgar, and J.M. Fryxell (2012) Rotifer Population Spread in Relation to Food, Density and Predation Risk in an Experimental System. Journal of Animal Ecology, 81: 323-329.