Document Type

Article

Journal/Book Title/Conference

Biogeochemistry

Author ORCID Identifier

Karen H. Beard https://orcid.org/0000-0003-4997-2495

Volume

166

Publisher

Springer Dordrecht

Publication Date

11-14-2023

Journal Article Version

Version of Record

First Page

67

Last Page

85

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Abstract

Global change drivers that modify the quality and quantity of litter inputs to soil affect greenhouse gas fluxes, and thereby constitute a feedback to climate change. Carbon cycling in the Yukon–Kuskokwim (Y–K) River Delta, a subarctic wetland system, is influenced by landscape variations in litter quality and quantity generated by herbivores (migratory birds) that create ‘grazing lawns’ of short stature, nitrogen-rich vegetation. To identify the mechanisms by which these changes in litter inputs affect soil carbon balance, we independently manipulated qualities and quantities of litter representative of levels found in the Y–K Delta in a fully factorial microcosm experiment. We measured CO2 fluxes from these microcosms weekly. To help us identify how litter inputs influenced greenhouse gas fluxes, we sequenced soil fungal and bacterial communities, and measured soil microbial biomass carbon, dissolved carbon, inorganic nitrogen, and enzyme activity. We found that positive correlations between litter input quantity and CO2 flux were dependent upon litter type, due to differences in litter stoichiometry and changes to the structure of decomposer communities, especially the soil fungi. These community shifts were particularly pronounced when litter was added in the form of herbivore feces, and in litter input treatments that induced nitrogen limitation (i.e., senesced litter). The sensitivity of carbon cycling to litter quality and quantity in this system demonstrates that herbivores can strongly impact greenhouse gas fluxes through their influence on plant growth and tissue chemistry.

Included in

Life Sciences Commons

Share

COinS