Document Type

Article

Journal/Book Title/Conference

Animals

Author ORCID Identifier

Cole A. Bleke https://orcid.org/0000-0003-1919-1559

Eric M. Gese https://orcid.org/0000-0001-8910-7397

Susannah S. French https://orcid.org/0000-0001-8923-9728

Volume

14

Issue

10

Publisher

MDPI AG

Publication Date

5-15-2024

Journal Article Version

Version of Record

First Page

1

Last Page

18

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Abstract

Monitoring vital rates allows managers to estimate trends in growth rates of ungulate populations. However, connecting the influence of nutrition on ungulate demography is challenging. Noninvasive sampling offers a low-cost, low-effort alternative for measuring nutritional indices, allowing for an increased understanding of the mechanistic relationships between environmental factors, nutrition, and specific population vital rates. We examined the temporal influence of intrinsic and extrinsic factors on pronghorn (Antilocapra americana) fawn recruitment. We collected fresh fecal samples from adult female pronghorn in five subpopulations spanning three sampling periods associated with critical maternal life-history stages (late gestation, early lactation, breeding season) for 2 years to investigate both intra- and interannual influences. Intrinsic factors were fecal glucocorticoid metabolites (FGMs), nutritional indices (fecal nitrogen (FN) and 2,6-diaminopimelic acid (DAPA)), and dietary composition (protein intake of forbs, graminoids, legumes, other, shrubs), while the extrinsic factor was vegetative greenness (normalized difference vegetation index (NDVI)). We found variations in DAPA, protein intake of forbs, variation in forb protein intake, and protein intake of legumes during late gestation positively influenced fawn recruitment. Fecal nitrogen during early lactation showed the strongest positive influence on the recruitment of any measured parameter. Finally, breeding season NDVI and the variation in DAPA values positively influenced the subsequent year’s fawn recruitment. Our longitudinal study enabled us to investigate which parameter was most important to specific periods of fawn development and recruitment. We combined the results across five subpopulations, but interpretation and subsequent management decisions should be made at the subpopulation level such that pronghorn subpopulations with low recruitment can be positively influenced by increasing nitrogen on the landscape available to adult females during the early lactation period. As the use of noninvasive monitoring methods continues to expand, we believe our methodologies and results can be broadly applied to other ungulate monitoring programs.

Share

COinS