Document Type
Presentation
Journal/Book Title/Conference
2016 PCI Convention & National Bridge Conference
Publication Date
2016
Abstract
As energy codes become more stringent, thermal efficiency of Precast Concrete Sandwich Panel Walls has become more important. This paper addresses the problem of predicting the behavior of full scale precast concrete sandwich panel walls, using data collected from small, inexpensive push-off specimens. Several fiber reinforced polymer (FRP) connectors being used today underwent shear testing performed on component scale push-off specimens. Each specimen contained several of the FRP connectors and the variables studied were wythe thickness, insulation type and insulation bond. A simplified beam spring model was created which uses beams to represent the concrete wythes and shear springs to model the shear deformation behavior created by the foam and shear connectors. This model was found to be accurate as compared to results from the literature. A short parametric study was performed using the beam spring model to investigate the effects of connector strength, pattern and intensity. It was found a triangular distribution of shear connectors – more lumped near the ends – is more structurally efficient. Further validation of this model is required and economizing and simplifying this procedure is key to more widespread implementation of thermally efficient, structurally composite, precast concrete sandwich panel walls.
Recommended Citation
Olsen, Jaiden and Maguire, Marc, "Shear Testing of Precast Concrete Sandwich Wall Panel Composite Shear Connectors" (2016). Civil and Environmental Engineering Faculty Publications. Paper 1233.
https://digitalcommons.usu.edu/cee_facpub/1233