Document Type

Article

Journal/Book Title

Journal of Chemical Physics

Publication Date

1990

Volume

93

First Page

4243

Last Page

4253

Abstract

The Heitler–London (HL) exchange energy is responsible for the anisotropy of the pair potential in methane. The equilibrium dimer structure is that which minimizes steric repulsion between hydrogens belonging to opposite subsystems. Dispersion energy, which represents a dominating attractive contribution, displays an orientation dependence which is the mirror image of that for HL exchange. The three‐body correction to the pair potential is a superposition of HL and second‐order exchange nonadditivities combined with the Axilrod–Teller dispersion nonadditivity. A great deal of cancellation between these terms results in near additivity of methane interactions in the long and intermediate regions.

Comments

Originally published by American Institute of Physics in the Journal of Chemical Physics.

Publisher's PDF can be accessed through the remote link.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.