Document Type

Article

Journal/Book Title/Conference

Hydrology

Volume

12

Issue

10

Publisher

MDPI AG

Publication Date

10-11-2025

Journal Article Version

Version of Record

First Page

1

Last Page

26

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Abstract

Streamflow forecasting in snowmelt-dominated basins is essential for water resource planning, flood mitigation, and ecological sustainability. This study presents a comparative evaluation of statistical, machine learning (Random Forest), and deep learning models (Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Spatio-Temporal Graph Neural Network (STGNN)) using 30 years of data from 20 monitoring stations across the Upper Colorado River Basin (UCRB). We assess the impact of integrating meteorological variables—particularly, the Snow Water Equivalent (SWE)—and spatial dependencies on predictive performance. Among all models, the Spatio-Temporal Graph Neural Network (STGNN) achieved the highest accuracy, with a Nash–Sutcliffe Efficiency (NSE) of 0.84 and Kling–Gupta Efficiency (KGE) of 0.84 in the multivariate setting at the critical downstream node, Lees Ferry. Compared to the univariate setup, SWE-enhanced predictions reduced Root Mean Square Error (RMSE) by 12.8%. Seasonal and spatial analyses showed the greatest improvements at high-elevation and mid-network stations, where snowmelt dynamics dominate runoff. These findings demonstrate that spatio-temporal learning frameworks, especially STGNNs, provide a scalable and physically consistent approach to streamflow forecasting under variable climatic conditions.

Share

COinS