Date of Award:
5-1996
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Wildland Resources
Department name when degree awarded
Fisheries and Wildlife
Committee Chair(s)
Chris Luecke
Committee
Chris Luecke
Committee
David Beauchamp
Committee
James Haefner
Committee
Mark Ritchie
Committee
Wayne Wurtsbaugh
Abstract
A bioenergetics model was constructed for stream-resident drift-feeding salmonids. Model predictions of surplus power (energy available per unit time for growth and reproduction) were not statistically distinguishable from observations of surplus power in three laboratory studies. Of 40 experimental trials in these three studies, the model correctly predicted surplus power in 39 cases (p < 0.05).
I collected observations of rainbow trout (Oncorhynchus mykiss) focal velocity and physical habitat availability in the Green River of northeastern Utah, USA (1988-1990). In the winter of 1988, Flaming Gorge Dam generated hydropower and delivered an lJDStable discharge regime with a higher mean discharge to the Green River. During 1989 and 1990, Flaming Gorge Dam's operation was curtailed by drought. Therefore, the Green River exhibited a more stable discharge regime with lower mean daily discharge.
During winters exhibiting the stable discharge regime, all size classes of rainbow trout selected slower focal velocities than under an unstable winter discharge regime. Season had less influence on microhabitat selection of large fish than smaller individuals. Rainbow trout larger than 33 cm (total length) find and use positions with low focal velocities and high velocity shear regardless of season. In contrast, during the summer, fish less than 33 cm TL find and use positions with much higher focal velocities and greater velocity shear compared to the winter.
Four bioenergetic models were tested with the focal velocity use data. Two optimal goal models produced excellent fits (r2 = 0.91 and 0.93) to observed focal velocity use of rainbow trout larger than 33 cm TL. These results were consistent with the hypothesis that large rainbow trout were finding optimal focal velocity positions in stable discharge summers and under both discharge regimes in winter.
Rainbow trout movement was quantified along two scales with radio-telemetered fish: 1) weekly observations generated estimates of distances moved at intervals greater than one day and 2) multiple observations of a fish in one day produced estimates of distances moved over hours. I found an unstable discharge regime significantly reduces movement measured weekly (F = 11.10, P = 0.0019); hourly movement rates (m/h) were also reduced (F = 5.90, P = 0.0273).
Checksum
b4fd89716f883b10f233cb9f69b7c020
Recommended Citation
Bowen, Mark D., "Habitat Selection and Movement of a Stream-Resident Salmonid in a Regulated River and Tests of Four Bioenergetic Optimization Models" (1996). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 6433.
https://digitalcommons.usu.edu/etd/6433
Included in
Aquaculture and Fisheries Commons, Ecology and Evolutionary Biology Commons, Environmental Sciences Commons
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .