Date of Award:
5-1996
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Geosciences
Department name when degree awarded
Geology
Committee Chair(s)
James P. Evans
Committee
James P. Evans
Committee
Susanne U. Janecke
Committee
Peter T. Kolesar
Abstract
An integrated field and structural analysis of the Mitten Park fault-fold structure, northwestern Colorado and northeastern Utah, examines its structural origin. The Mitten Park structure is a modified fault-propagation-fold. This new model incorporates faulting, folding, and fracturing in one deformational event to produce the Mitten Park fault and associated monocline.
The largest structure in the study area is the Mitten Park fault and associated monocline. The Mitten Park fault has approximately 127 meters (415 feet) of net slip, strikes S28°W and dips 55°WNW. In the footwall, net shortening was accommodated by reverse and normal faulting. Faulting was the result of northwest-southeast directed shortening. Reverse faulting accommodated the majority of the fault-related strain along the fault's trace and resulted in net shortening. However, normal faults in the overturned limb of the footwall of the Mitten Park fault also accommodated northwest-southeast directed shortening.
Folds in the study area are asymmetrical and statistically cylindrical in both the footwall and the hanging wall. Folding facilitates northwest-southeast directed shortening. There is a direct correlation between changes in the strike and dip of the fault plane and changes in the trend and plunge of fold axis in the footwall.
Fracture orientations show no significant variation in geometry from hanging wall to footwall. Fracture intensity increases with proximity to the Mitten Park fault.
Balanced cross sections of the Mitten Park area use a modified fault-propagation- fold model and are also constrained by field observations and interlimb angles of folds. Total shortening in the study area is 13.5% and was accommodated by the hanging wall, the footwall, and the Mitten Park fault. The hanging wall accommodated 70.8% of total shortening, the footwall accommodated 14.9% of total shortening, and the Mitten Park fault accommodated 14.3% of total shortening. The significant amount of strain in the footwall of the fault is different from classical models of fault-propagation-folds, which depict a rigid undeformed footwall.
Checksum
f87b7eb0a3008be964e3f6f3d91a986c
Recommended Citation
Brown, Clint M., "Structural Analysis of the Mitten Park Reverse Fault and Related Deformation in Dinosaur National Monument, Northwestern Colorado and Northeastern Utah" (1996). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 6704.
https://digitalcommons.usu.edu/etd/6704
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .