Date of Award:
12-2021
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Mechanical and Aerospace Engineering
Committee Chair(s)
Tadd T. Truscott
Committee
Tadd T. Truscott
Committee
Randall Christensen
Committee
Greg Droge
Committee
Tianyi He
Committee
Jesse Belden
Abstract
In recent years there has been a sharp increase in deriving inspiration from nature for engineering applications. However there has been lack of high-resolution data from which insights into collective behavior can be drawn and models can be validated. In this imaging based thesis, data from high-speed, overhead cameras, and GPS tracking are used to collect position and sensory data for large groups of 40 or more members. These data helps us understand how different members (fish, cyclists) of a group interact with each other in collective motion. The focus of this work is to find how individual behavior leads to collective behavior in different groups. In some of these groups, all individuals had the same goal whereas in other groups, some individuals had different agendas. The ultimate goal is to create models which can be used to explain and predict individual behaviors in collective motion. A visual sensor based model has been build which is able to replicate collective motion from experiments with minimal input. A cross correlation based algorithm has also been developed which can identify individuals with different purpose within a group. These models can be used for robotic swarming, autonomous vehicles and naval purposes.
Checksum
57cb0e69206ab5b6dea7d82accccb822
Recommended Citation
Rahman, Syed Rafid, "Collective Motion in Pelotons and Fish Schools: Observation and Modeling" (2021). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 8354.
https://digitalcommons.usu.edu/etd/8354
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .