A Characterization of Cycle-free Unit Probe Interval Graphs
Document Type
Article
Journal/Book Title/Conference
Discrete Applied Mathematics
Volume
157
Issue
4
Publisher
Elsevier
Publication Date
2009
First Page
762
Last Page
767
Abstract
A graph is a probe interval graph (PIG) if its vertices can be partitioned into probes and nonprobes with an interval assigned to each vertex so that vertices are adjacent if and only if their corresponding intervals overlap and at least one of them is a probe. PIGs are a generalization of interval graphs introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. PIGs have been characterized in the cycle-free case by Sheng, and other miscellaneous results are given by McMorris, Wang, and Zhang. Johnson and Spinrad give a polynomial time recognition algorithm for when the partition of vertices into probes and nonprobes is given. The complexity for the general recognition problem is not known. Here, we restrict attention to the case where all intervals have the same length, that is, we study the unit probe interval graphs and characterize the cycle-free graphs that are unit probe interval graphs via a list of forbidden induced subgraphs.
Recommended Citation
Brown, D. E., J. R. Lundgren and L. Sheng, A Characterization of Cycle-free Unit Probe Interval Graphs, Discrete Applied Math, 157 (2009) 762 - 767.