Document Type
Article
Journal/Book Title/Conference
International Journal of Concrete Structures and Materials
Volume
13
Issue
20
Publisher
Springer Singapore
Publication Date
3-6-2019
First Page
1
Last Page
18
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Abstract
While internal and external unbonded tendons are widely utilized in concrete structures, an analytical solution for the increase in unbonded tendon stress at ultimate strength, Δ������, is challenging due to the lack of bond between strand and concrete. Moreover, most analysis methods do not provide high correlation due to the limited available test data. The aim of this paper is to use advanced statistical techniques to develop a solution to the unbonded strand stress increase problem, which phenomenological models by themselves have done poorly. In this paper, Principal Component Analysis (PCA), and Sparse Principal Component Analysis (SPCA) are employed on different sets of candidate variables, amongst the material and sectional properties from a database of Continuous unbonded tendon reinforced members in the literature. Predictions of Δ������ are made via Principal Component Regression models, and the method proposed, linear models using SPCA, are shown to improve over current models (best case ��2 of 0.27, measured-to-predicted ratio [λ] of 1.34) with linear equations. These models produced an ��2 of 0.54, 0.70 and λ of 1.03, and 0.99 for the internal and external datasets respectively.
Recommended Citation
McKinney, E., Chang, M., Maguire, M. et al. Int J Concr Struct Mater (2019) 13: 20. https://doi.org/10.1186/s40069-019-0339-y