Document Type
Article
Journal/Book Title/Conference
Rocky Mountain Journal of Mathematics
Volume
50
Issue
1
Publisher
Rocky Mountain Mathematics Consortium
Publication Date
8-22-2019
First Page
181
Last Page
212
Abstract
We survey the Hirzebruch signature theorem as a special case of the Atiyah–Singer index theorem. The family version of the Atiyah–Singer index theorem in the form of the Riemann–Roch–Grothendieck–Quillen (RRGQ) formula is then applied to the complexified signature operators varying along the universal family of elliptic curves. The RRGQ formula allows us to determine a generalized cohomology class on the base of the elliptic fibration that is known in physics as (a measure of) the local and global anomaly. Combining several anomalous operators allows us to cancel the local anomaly on a Jacobian elliptic surface, a construction that is based on the construction of the Poincaré line bundle over an elliptic surface.
Recommended Citation
Malmendier, Andreas; Schultz, Michael T. From the signature theorem to anomaly cancellation. Rocky Mountain J. Math. 50 (2020), no. 1, 181--212. doi:10.1216/rmj.2020.50.181. https://projecteuclid.org/euclid.rmjm/1588233638