Document Type

Report

Journal/Book Title/Conference

NCETE

Publication Date

2011

First Page

1

Last Page

7

Abstract

Society is recognizing the need to improve STEM education and introduce engineering design concepts before college. In the recent National Academy of Engineers report, Engineering in K-12 Education: Understanding the Status and Improving the Prospects, the authors suggest that the STEM disciplines not be treated as ―silos‖ and that engineering might serve as a motivating context to integrate the four STEM disciplines (Katehi, Pearson, & Feder, 2009). Recent research has suggested that integrated technology and engineering design curriculum can serve as a positive model for mathematics and science learning and retention (Ortiz, 2010; Wendell, 2011). The Tufts University Center for Engineering Education and Outreach (CEEO) strives to improve STEM education through engineering and believes every student should have the chance to engineer. Situated in Massachusetts, the first state to adopt engineering education at all levels in public schools (Massachusetts DOE, 2001), the CEEO supports the belief that engineering education starts in kindergarten and continues to develop throughout their K-12 schooling. We also believe that at the core of K-12 engineering is the Engineering Design Process (EDP). The purpose of introducing students to the EDP is not to have them ―build things‖, a common misconception. The EDP is meant to teach students that engineering is about organizing thoughts to improve decision making for the purpose of developing high quality solutions and/or products to problems. The knowledge and skills associated with the EDP are independent of the engineering discipline (e.g., mechanical, electrical, civil, etc.) and engineering science (e.g., thermodynamics, statics, or mechanics) knowledge that a particular engineering challenge may call upon. Design tasks therefore entail developing the kinds of critical thinking skills commonly associated with engineering and technology literacy. Three key concepts in successful implementation of the EDP are: students are engineers; teachers need to listen to their students; and classroom environments need to change to properly enable learning through the EDP.

Share

COinS