All Physics Faculty Publications

Document Type

Article

Journal/Book Title/Conference

Radio Science

Volume

41

Issue

RS5S03

Publisher

American Geophysical Union

Publication Date

2006

Abstract

Ionograms recorded with a dynasonde at Bear Lake Observatory, Utah, during moderate solar x-ray flares exhibit characteristic enhancements to the E and F 1 region ionosphere. However, during these same flares, the peak electron density of the ionosphere (N m F 2) unexpectedly decreases, recovering after the flare ends. In order to reconcile this anomalous behavior with expected increases to the total electron content (TEC), we undertake a modeling effort using the Time-Dependent Ionospheric Model (TDIM) developed at Utah State University. For solar input, a simple flare time irradiance model is created, using measurements from the Solar EUV Experiment instrument on the TIMED spacecraft. TDIM simulations show that the anomalous N m F 2 response can be explained by assuming a rapid electron temperature increase, which increases the O+ scale height, moving plasma to higher altitudes. The model results are able to reproduce both the decreasing N m F 2 as well as the expected TEC enhancement.

Comments

Originally published by the American Geophysical Union in Radio Science.

Included in

Physics Commons

Share

COinS