Document Type

Article

Journal/Book Title/Conference

Structural Equation Modeling: A Multidisciplinary Journal

Volume

26

Issue

6

Publisher

Psychology Press

Publication Date

2-19-2019

First Page

1

Last Page

49

Abstract

Latent state-trait (LST) models are commonly applied to determine the extent to which observed variables reflect trait-like versus state-like constructs. Mixture distribution LST (M-LST) models relax the assumption of population homogeneity made in traditional LST models, allowing researchers to identify subpopulations (latent classes) with differing trait- and state-like attributes. Applications of M-LST models are scarce, presumably because of the analysis complexity. We present a step-by-step tutorial for evaluating M-LST models based on an application to mother, father, and teacher reports of children’s inattention (n = 811). In the application, we found three latent classes for mother and father reports and four classes for teacher reports. All reporter solutions contained classes with very low, low, and moderate levels of inattention. The teacher solution also contained a class with high inattention. Comparable mother and father (but not teacher) classes exhibited similar levels of trait and state variance.

Comments

This is an Accepted Manuscript of an article published by Taylor & Francis in Structural Equation Modeling: a Multidisciplinary Journal on February 19th, 2019, available online: http://www.tandfonline.com/10.1080/10705511.2019.1575741

Share

COinS