Session
Technical Session VII: Propulsion
Abstract
The success of nanospacecraft (1–10 kg) and the evolution of the millimeter-scale wireless sensor network concept have cultivated interest in small, sub-kilogram scale, “smartphone”-sized ultra-small satellites, either as stand-alone spacecraft or as elements in a maneuverable fleet. Many of these are envisioned to have a flat geometry and can have a high area-to-mass ratio, which results in a short orbital lifetime in low Earth orbit due to atmospheric drag. Here, we update previous trade studies in which we investigated the use of a very short (few meters), semi-rigid electrodynamic tether for ultra-small satellite propulsion. The results reveal that an insulated tether, only a few meters long and tens of micrometers in diameter, can provide 10-g to 1-kg satellites with complete drag cancellation and the ability to change orbit. Further, a few meter tether could serve as a communications antenna. We also provide a description of the Miniature Tether Electrodynamics Experiment (MiTEE) being planned. The goal of MiTEE will be to demonstrate and study miniature electrodynamic tether capabilities in space.
Presentation Slides
Investigating the Feasibility and Mission Enabling Potential of Miniaturized Electrodynamic Tethers for Femtosatellites and Other Ultra-small Satellites
The success of nanospacecraft (1–10 kg) and the evolution of the millimeter-scale wireless sensor network concept have cultivated interest in small, sub-kilogram scale, “smartphone”-sized ultra-small satellites, either as stand-alone spacecraft or as elements in a maneuverable fleet. Many of these are envisioned to have a flat geometry and can have a high area-to-mass ratio, which results in a short orbital lifetime in low Earth orbit due to atmospheric drag. Here, we update previous trade studies in which we investigated the use of a very short (few meters), semi-rigid electrodynamic tether for ultra-small satellite propulsion. The results reveal that an insulated tether, only a few meters long and tens of micrometers in diameter, can provide 10-g to 1-kg satellites with complete drag cancellation and the ability to change orbit. Further, a few meter tether could serve as a communications antenna. We also provide a description of the Miniature Tether Electrodynamics Experiment (MiTEE) being planned. The goal of MiTEE will be to demonstrate and study miniature electrodynamic tether capabilities in space.