Session
Weekend Poster Session 2
Location
Utah State University, Logan, UT
Abstract
With a recent growth in the volume of spaceborne data, free space optical (FSO) or laser communication systems are attracting attention, as they can enable super-high data rates faster than 1 Gbps. The Very high-speed Inter-satellite link Systems using Infrared Optical terminal and Nanosatellite (VISION) is a technical demonstration mission to establish and validate laser crosslink systems using two 6U nanosatellites in formation flying. The final goal is to achieve a Gbps-level data rate at a distance of thousands of kilometers. To establish space-to-space laser communication, the payload optical axes of each satellite should be precisely aligned during the crosslink. The payload is the laser communication terminal (LCT) including the deployable space telescope (DST), which improves optical link performances. The 6U nanosatellite bus is designed with commercial off-the shelf-(COTS) components for agile systems development. For precise formation flying, the bus is equipped a with relative navigation system with a GNSS receiver and RF crosslink, star tracker, 3-axis reaction wheels (RWs), and propulsion system. This proposed concept of the laser crosslink systems will contribute to the construction of the LEO communication constellation with high speed and secure links in future.
Design of 6U Nanosatellites in Formation Flying for the Laser Crosslink Mission
Utah State University, Logan, UT
With a recent growth in the volume of spaceborne data, free space optical (FSO) or laser communication systems are attracting attention, as they can enable super-high data rates faster than 1 Gbps. The Very high-speed Inter-satellite link Systems using Infrared Optical terminal and Nanosatellite (VISION) is a technical demonstration mission to establish and validate laser crosslink systems using two 6U nanosatellites in formation flying. The final goal is to achieve a Gbps-level data rate at a distance of thousands of kilometers. To establish space-to-space laser communication, the payload optical axes of each satellite should be precisely aligned during the crosslink. The payload is the laser communication terminal (LCT) including the deployable space telescope (DST), which improves optical link performances. The 6U nanosatellite bus is designed with commercial off-the shelf-(COTS) components for agile systems development. For precise formation flying, the bus is equipped a with relative navigation system with a GNSS receiver and RF crosslink, star tracker, 3-axis reaction wheels (RWs), and propulsion system. This proposed concept of the laser crosslink systems will contribute to the construction of the LEO communication constellation with high speed and secure links in future.