Session

Weekday Session 9: Formation Flying and RPO

Location

Utah State University, Logan, UT

Abstract

CubeSat formations have been identified as a new paradigm for addressing important science questions but are often early adopters of new technologies which carry additional risks. When these missions involve proximity operations, novel fault management architectures are needed to handle these risks. Building on established methods, this paper presents one such architecture that involves a passively safe relative orbit design, interchangeable chief-deputy roles, a formation level fault diagnosis scheme, and an autonomous multi-agent fault handling strategy. The primary focus is to enable the reliable detection of faults occurring on any formation member in real time and the autonomous decision making needed to resolve them while keeping the formation safe from an inter-satellite collision. The NSF-sponsored Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission, which consists of two 6U CubeSats flying in formation 40 meters apart as a distributed solar telescope, is used as a case study for the application of this architecture. The underlying fault analysis, formulation of key elements of the fault detection and response strategies, and the flight software implementation for VISORS are discussed in the paper.

Share

COinS
 
Aug 9th, 4:45 PM

Development of an Autonomous Distributed Fault Management Architecture for Spacecraft Formations Involving Proximity Operations

Utah State University, Logan, UT

CubeSat formations have been identified as a new paradigm for addressing important science questions but are often early adopters of new technologies which carry additional risks. When these missions involve proximity operations, novel fault management architectures are needed to handle these risks. Building on established methods, this paper presents one such architecture that involves a passively safe relative orbit design, interchangeable chief-deputy roles, a formation level fault diagnosis scheme, and an autonomous multi-agent fault handling strategy. The primary focus is to enable the reliable detection of faults occurring on any formation member in real time and the autonomous decision making needed to resolve them while keeping the formation safe from an inter-satellite collision. The NSF-sponsored Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission, which consists of two 6U CubeSats flying in formation 40 meters apart as a distributed solar telescope, is used as a case study for the application of this architecture. The underlying fault analysis, formulation of key elements of the fault detection and response strategies, and the flight software implementation for VISORS are discussed in the paper.