Session
Weekend Session 8: Advanced Technologies - Research & Academia II
Location
Utah State University, Logan, UT
Abstract
The LightSail 2 mission concluded a 3-year mission in November 2022, having successfully demonstrated controlled solar sailing in low-Earth orbit using a CubeSat platform. Flight data show that LightSail 2 successfully controlled its orientation relative to the Sun, with sustained periods of apogee raising and increasing orbital energy. The LightSail 2 solar sail was 5.6 m on a side and has a total deployed area of 32 m². Four independent triangular aluminized Mylar® sail sections 4.6 microns thick were Z-folded and stowed into four sail bays. The sail segments were deployed by four 4 m Triangular Retractable And Collapsible booms made of elgiloy. The booms were wound around a common spindle, with deployment driven by a Faulhaber motor containing Hall sensors. Attitude was controlled using a single-axis Sinclair Interplanetary momentum wheel and magnetic torque rods. During solar sailing operations, two 90 degree slews were performed each orbit to harness momentum from solar photons. The thrust from solar radiation pressure measurably reduced the rate of orbital decay, including an extended period of orbit raising. Two Planetary Society Cameras developed by the Aerospace Corporation were mounted at the tips of opposing solar panels, providing imaging for engineering evaluation and public engagement throughout mission operations. This paper provides a summary of the LightSail 2 mission implementation, including the flight system design and the pre-launch test program. LightSail 2 mission operations are described, including discussion of the ground system. Solar sailing performance is presented, and anomalies encountered during the mission are discussed. The Planetary Society's decade-long LightSail program was entirely donor-funded, with over 50,000 contributors worldwide. With a total cost of about $7M for two flight missions, the LightSail program showed that solar sails can provide a cost-effective option for propulsion of CubeSat-class vehicles.
The LightSail 2 Solar Sailing Mission Summary
Utah State University, Logan, UT
The LightSail 2 mission concluded a 3-year mission in November 2022, having successfully demonstrated controlled solar sailing in low-Earth orbit using a CubeSat platform. Flight data show that LightSail 2 successfully controlled its orientation relative to the Sun, with sustained periods of apogee raising and increasing orbital energy. The LightSail 2 solar sail was 5.6 m on a side and has a total deployed area of 32 m². Four independent triangular aluminized Mylar® sail sections 4.6 microns thick were Z-folded and stowed into four sail bays. The sail segments were deployed by four 4 m Triangular Retractable And Collapsible booms made of elgiloy. The booms were wound around a common spindle, with deployment driven by a Faulhaber motor containing Hall sensors. Attitude was controlled using a single-axis Sinclair Interplanetary momentum wheel and magnetic torque rods. During solar sailing operations, two 90 degree slews were performed each orbit to harness momentum from solar photons. The thrust from solar radiation pressure measurably reduced the rate of orbital decay, including an extended period of orbit raising. Two Planetary Society Cameras developed by the Aerospace Corporation were mounted at the tips of opposing solar panels, providing imaging for engineering evaluation and public engagement throughout mission operations. This paper provides a summary of the LightSail 2 mission implementation, including the flight system design and the pre-launch test program. LightSail 2 mission operations are described, including discussion of the ground system. Solar sailing performance is presented, and anomalies encountered during the mission are discussed. The Planetary Society's decade-long LightSail program was entirely donor-funded, with over 50,000 contributors worldwide. With a total cost of about $7M for two flight missions, the LightSail program showed that solar sails can provide a cost-effective option for propulsion of CubeSat-class vehicles.