"Tracking the Translocation of Nanoplastics From Soil to Plant: Compari" by Junjie Tang, Abdelazeem S. Eltaweil et al.
 

Document Type

Article

Journal/Book Title/Conference

Journal of Hazardous Materials

Volume

488

Publisher

Elsevier BV

Publication Date

1-30-2025

First Page

1

Last Page

21

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

Nanoplastics (NPs) are increasingly prevalent in the environment, posing potential risks to agricultural systems and the food web. Despite this, currently it lacks comprehensive evaluation on NPs detection and quantification techniques, which is critical for quantitatively understanding the fate and transport of NPs. To address this gap, our study systematically assesses and compares advanced analytical tools for tracking different types of NPs (derived from both top-down and bottom-up approaches) from soil to plants. For identifying and quantifying NPs from environmental samples, pyrolysis - gas chromatography - mass spectrometry (Py-GC-MS) and confocal-Raman spectroscopy demonstrate promise. For laboratory study, inductively coupled plasma mass spectrometry (ICP-MS) along with metal doped NPs enables good sensitivity for tracking NPs in plant system. Our results demonstrated a substantial NPs internalization, 1.09 × 101 1 NPs per gram in shoots and 1.52 × 101 1 NPs per gram in roots, by wheat seedlings after five days of exposure, leading to a notable 77.26 % reduction in biomass. This study highlights the importance of integrating multiple techniques to overcome the limitations of each individual technique and provides quantitative insight into the detection of NPs within plant systems, contributing to the improvement of methodology for NPs related research in environmental and agricultural fields.

Available for download on Saturday, January 30, 2027

Share

COinS